DOI: http://dx.doi.org/10.18782/2320-7051.5286

ISSN: 2320 – 7051

Int. J. Pure App. Biosci. 5 (5): 217-221 (2017)

Response of Tomato (*Lycopersicon esculentum* Mill.) to Integrated Nutrient Management

Rajesh Kumar*, V. K. Batra, Vinod Kumar, Amit Kumar

Department of Vegetable Science, CCS Haryana Agricultural University, Hisar *Corresponding Author E-mail: rajesh22berwal@gmail.com
Received: 23.07.2017 | Revised: 4.08.2017 | Accepted: 5.08.2017

ABSTRACT

A field experiment with thirteen treatments including control was conducted at Research Farm of the Department. of Vegetable Science, CCS Haryana Agricultural University, Hisar during spring summer 2006-07 to find out the most appropriate integrated nutrient management system for sustainable tomato production. It was found that application of 43.5 tonnes Farm yard manure (FYM) and 50% of recommended dose of fertilizers (RDF) gave maximum fruit yield (284.81 q ha⁻¹) over control (198.6 q ha⁻¹) which was significantly higher over all the treatments except green manuring and 100% recommended dose of fertilizer (T₁₃). The organic sources of nutrition along with inorganic sources showed incremental effect for almost all parameters including yield over inorganic sources alone. Maximum net return (Rs.40203 ha⁻¹) and B: C ratio (1.29) was also recorded with application of 43.5 tonnes FYM and 50% RDF over control (Rs.25650 ha⁻¹) and (1.06), respectively.

Key words: Tomato, Manure, Fertilizers, Fruit quality, Yield, Economics

INTRODUCTION

Tomato (Lycopersicon esculentum Mill.) is one of the most popular vegetable crop grown all over the world due to its wider adaptability to various agro-climatic conditions. Being a nutrient exhaustive, this crop requires ample supply of plant nutrients for satisfactory growth, yield and quality. The productivity of a crop is controlled by many factors of which mineral nutrition is by and large the most important one but the application of all the needed nutrients through chemical fertilizers had deleterious effect on soil fertility leading to unsustainable yield. It has been realized worldwide that chemical fertilizers while

increasing crop yield may have adverse effect on soil health and its fertility in case of imbalance use. Further, indiscriminate use of chemicals, on account of environmental concern and high cost, could not sustain vegetable production¹. The judicious integrated use of both nutrient sources provides an ideal environmental conditions for the crop, as the organic source improves soil properties and enhance the activity of soil biota, immobilize nutrients and slowly releases them, while the inorganic sources made available nutrients immediately, avoiding nutrient depression periods and hastens the decomposition of organic material².

Cite this article: Kumar, R., Batra V.K., Kumar V., Kumar A., Response of tomato (*Lycopersicon esculentum* Mill.) to integrated nutrient management, *Int. J. Pure App. Biosci.* **5(5):** 217-221 (2017). doi: http://dx.doi.org/10.18782/2320-7051.5286

ISSN: 2320 - 7051

It has been acknowledged that organic and inorganic fertilizer inputs cannot be substituted entirely by one another and are both required for better and sustainable crop production ^{3&4}. Hence, an alternate technology is the use of organic manure in conjunction with inorganic fertilizers, which still sustain high yield over years and ensure environmental safety. Therefore, the present study was undertaken to study the effect of application of organic and inorganic sources of nutrition on growth, yield, nutrients uptake and fruit quality of tomato.

MATERIALS AND METHODS

A field experiment was conducted at Vegetable Research Farm, Department of Vegetable Science, CCS Haryana Agricultural University, Hisar during spring summer 2006-07 on tomato cv. Hisar Arun. The soil of experimental field was sandy loam with pH 8.3, organic carbon 0.39%, available nitrogen 100 kg ha⁻¹, available phosphorus 22.0 kg ha⁻¹ and available potassium 370 kg ha⁻¹.

experiment comprised of The thirteen treatments viz. T₁- Control (no organic manure inorganic fertilizer), T_2 and 100% recommended dose of fertilizers (RDF) i.e. 100 kg N, 62.5 kg P and 50 kg K ha⁻¹, T₃- 25 tonnes farmyard manure (FYM) ha⁻¹, T₄- 37.5 tonnes FYM ha⁻¹, T₅- 43.5 tonnes FYM ha⁻¹, T₆- 25 tonnes FYM ha⁻¹ and 100% RDF, T₇-37.5 tonnes FYM ha⁻¹ and 75% RDF, T₈-43.75 tonnes FYM ha⁻¹ and 50% RDF, T₉green manuring (GM), T₁₀- GM and 12.5 tonnes FYM ha⁻¹, T₁₁- GM and 25 tonnes FYM ha⁻¹, T₁₂- GM and 50% RDF, T₁₃- GM and 100% RDF. The treatments were laid out in Randomized Block Design with three replications. FYM (0.68% N, 0.36% P and 1.2% K) was applied fifteen days before transplanting tomato seedlings. Dhaincha was used as green manure crop in Kharif season i.e. preceding to tomato. Half dose of nitrogen and full dose of phosphorus and potassium were applied as basal dose, whereas, rest amount of nitrogen was applied in split doses after transplanting. One month old seedlings of tomato were transplanted at a spacing of 60 x 45 cm. Proper package and practices were followed throughout the crop period. Data on growth parameters like plant height and branches per plant were taken after 90 days of transplanting of tomato seedlings. The data on yield were recorded at picking and totalled to get total yield. Other parameters like fruit quality were recorded at fruit picking and economics estimated based on yield and prevailing market price.

RESULTS AND DISCUSSION

Growth, yield attributes and yield

The experimental results revealed that the growth characteristics like plant height and per plant were significantly branches influenced by various treatments (Table1). Application of 43.5 tonnes of FYM and 50% RDF (T₈) gave taller plants (60.0cm) than other treatments, which was at par with treatment T_2 , T_6 , T_7 , T_{11} , T_{12} and T_{13} . The shortest plants were recorded with control. Similarly maximum number of branches was also noticed with T_8 and least in control. Though all the treatments proved statistically nonsignificant for days to 50% flowering but they showed earliness than the control.

The minimum days required for first harvesting (81.50 days) from DAT was recorded in T8 while maximum days required for first harvesting (92.00 days) were recorded in T1. Renuka and Sankar⁵ also reported earliness in flowering and fruiting in tomato Earliness of flowering and fruiting is an important trait in tomato crop and in these cases; it could be attributed to the faster enhancement of vegetative growth and storing sufficient reserved food material for differentiation of buds into flower buds.

Yield attributes such as fruits number and average fruit weight were recorded maximum in T₈ (43.75 tonnes FYM and 50% RDF) which resulted in the highest yield of 0.800 kg plant⁻¹ and 284.81 q ha⁻¹ followed by application of GM and 100% RDF (T₁₃) gave yield of 270.44 q ha⁻¹, The lowest yield (198.6 q ha⁻¹) was recorded with control plots in which no fertilizers was applied. It is clear that integration of organic with inorganic sources of nutrition proved superior over

ISSN: 2320 - 7051

recommended dose of fertilizer. The results are in the close agreement with the findings of Bagale *et al.*⁶ and Nanthakumar and Veeraragavetatham⁷ who observed similar increase in yield of tomato and brinjal, respectively when organic and inorganic sources were applied together than inorganic

sources alone. This might be due to the availability of more plant nutrients by improving soil physical conditions and solubilizing the nutrients in soil by applying organic sources of nutrition which ultimately reflected in terms of yield attributing characters and yield.

Table 1: Effect of Integrated nutrient management on growth, yield attributing characters and yield

Treatments	Plant height	No. of branches	Days to 50%	Days to 1st	No. of fruits	Average fruit	Yield plant-1	Yield (q ha
	(cm)	plant ⁻¹	flowering	harvesting	plant ⁻¹	weight (g)	(kg)	1)
T ₁ Control (no manure/fertilizer)	54.40	5.20	43.06	92.00	22.96	24.76	0.700	198.60
T ₂ 100% RDF	58.40	6.56	41.00	82.10	32.56	40.54	0.760	260.00
T ₃ 25 tonnes FYM ha ⁻¹	54.50	5.73	42.06	86.50	30.46	28.92	0.740	218.50
T ₄ 37.5 tonnes FYM ha ⁻¹	55.66	5.66	42.40	85.96	31.20	36.62	0.750	227.00
T ₅ 43.75 tonnes FYM ha ⁻¹	57.06	5.90	42.06	84.20	32.26	39.16	0.790	233.10
T ₆ 25 t FYM and 100% RDF	57.80	6.00	41.30	83.53	33.66	38.28	0.830	244.50
T ₇ 37.5 t FYM and 75% RDF	57.46	6.80	41.00	82.63	35.00	40.83	0.800	262.53
T ₈ 43.75 t FYM and 50% RDF	60.00	7.23	41.93	81.50	36.46	73.76	0.850	284.81
T ₉ Green Manuring (GM)	54.73	5.90	42.00	85.93	30.33	34.95	0.690	215.20
T ₁₀ GM and 12.5 t FYM	56.86	6.00	41.86	84.93	31.70	38.37	0.780	229.03
T ₁₁ GM and 25 t FYM	57.63	6.36	41.40	82.93	32.33	39.33	0.820	240.00
T ₁₂ GM and 50% RDF	57.53	6.80	41.20	82.73	34.36	39.68	0.830	250.23
T ₁₃ Gm and 100% RDF	58.60	7.00	40.76	82.10	33.56	41.69	0.840	270.44
CD (P=0.05)	2.60	0.44	NS	1.90	2.73	2.63	0.070	14.40

Table 2: Effect of Integrated nutrient management on fruit quality and nutrient uptake by plant

Treatments	Pericarp thickness (mm)	Lycopene (mg/100 g of	TSS (%)	Ascorbic acid (mg/g)	Titratable acidity (%)	N content (g plant ⁻¹)	P content (g plant ⁻¹)	K content (g plant ⁻¹)
	thekness (min)	juice)		(mg/g)	actify (70)	(g plant)	(g plant)	(g plant)
T ₁ Control (no manure/fertilizer)	3.33	1.93	3.96	19.57	0.42	0.70	0.05	0.03
T ₂ 100% RDF	3.60	2.18	4.13	23.18	0.50	0.72	0.16	0.33
T ₃ 25 tonnes FYM ha ⁻¹	4.10	2.19	4.46	20.19	0.46	0.71	0.12	0.32
T ₄ 37.5 tonnes FYM ha ⁻¹	3.83	2.10	4.50	20.76	0.47	0.70	0.11	0.32
T ₅ 43.75 tonnes FYM ha ⁻¹	4.40	2.12	5.00	21.14	0.48	0.70	0.11	0.32
T ₆ 25 t FYM and 100% RDF	4.06	2.13	4.60	23.76	0.56	0.82	0.12	0.33
T ₇ 37.5 t FYM and 75% RDF	4.63	2.13	4.70	23.59	0.57	1.10	0.17	0.33
T ₈ 43.75 t FYM and 50% RDF	4.83	2.22	4.80	25.38	0.61	1.20	0.19	0.35
T ₉ Green Manuring	3.63	2.10	4.30	20.15	0.49	0.70	0.11	0.30
T ₁₀ GM and 12.5 t FYM	4.00	2.19	4.10	20.14	0.52	0.78	0.10	0.31
T ₁₁ GM and 25 t FYM	4.33	2.17	4.20	20.03	0.53	0.98	0.11	0.31
T ₁₂ GM and 50% RDF	4.23	2.15	4.00	22.53	0.52	1.10	0.12	0.32
T ₁₃ Gm and 100% RDF	4.60	2.20	4.20	23.16	0.51	1.15	0.13	0.33
CD (P=0.05)	0.47	NS	0.29	1.76	0.05	0.05	0.02	0.03

Fruit quality & Nutrients uptake

It is evident from the Table 2 that various organic sources of nutrition significantly influenced different quality parameters of tomato. All treatments increased the pericarp thickness of tomato significantly over control except RDF (T_2) and green manuring (T_9). No treatment showed statistically significant influence over control for lycopene content, however, the treatment T_8 showed maximum lycopene content. Application of 43.75 tonnes FYM ha⁻¹ (T_5) gave maximum total soluble solids which was at par with treatment T_8 . It is also observed that the application of 43.75 tonnes FYM and 50% RDF (T_8) gave

maximum ascorbic acid content (25.38 mg g $^{-1}$) and titratable acidity (0.61%) over control (19.57 mg g $^{-1}$) and (0.40%), respectively. Fruit quality enhancement were also observed organic sources alone or in combination with inorganic components 8 . The increase in titratable acidity might be due to the increased activity of the enzyme acetone.

It is clear from the data given in Table 2 that different treatments also significantly influenced the nutrients uptake in tomato. Application of 43.75 tonnes FYM and 50% RDF (T₈) showed maximum nitrogen uptake (1.2g plant⁻¹) followed by the application of green manuring and 100% RDF (T₁₃) which

various organic acids liberated during the decomposition of organic matters.

Economics

The data presented in Table 3 clearly indicated that though the cost of cultivation is higher with application of 43.75 tonnes FYM and 50% RDF (T₈) but it gave higher yield and net profit (Rs.40203 ha⁻¹) over control (Rs.25650 ha⁻¹). This treatment also gave highest B: C ratio (1.29) compared to control (1.06). Other two treatments gave almost equal B: C ratio while least was from control. The present results are also confirmed by the finding of Singh *et. al.*¹¹ where high benefit cost ratio was found in the treatments where organic source of fertilizers were used in the combination of inorganic fertilizers.

were at par with each other. All treatments increased the uptake of phosphorous significantly over control but maximum uptake (0.19 g plant⁻¹) was recorded with T₈, which was at par with T_7 . Similarly, all the treatments increased potassium uptake significantly over control. These findings are in close agreement with findings of Nair and Peter9 in chilli. The combined effect of organic and inorganic fertilization enhanced P uptake in elephant foot yam¹⁰. Organic sources when added to the soil, with the action of micro-organisms, complex nitrogenous compounds breakdown and its availability in the form of nitrate is steady throughout crop growth whereas, increase in phosphorus availability may be attributed to more solubility of native phosphorus from the soil due to the action of

Table 3: Comparison of economics of yield for the best treatment with control in tomato cv. Hisar Arun under integrated nutrient management system

_	_	•		
Total	Gross income	Approx. cost	Net profit	B: C
yield q	(Rs.)	of cultivation	(Rs. ha ⁻¹)	ratio
ha ⁻¹		(Rs. ha ⁻¹)		
260.00	65,000	29,200	35,800	1.23
284.81	71,203	31,000	40,203	1.29
270.44	67,610	30,500	37,110	1.22
198.60	49,650	24,000	25,650	1.06
	yield q ha ⁻¹ 260.00 284.81 270.44	yield q (Rs.) ha ⁻¹ 260.00 65,000 284.81 71,203 270.44 67,610	yield q ha ⁻¹ (Rs.) of cultivation (Rs. ha ⁻¹) 260.00 65,000 29,200 284.81 71,203 31,000 270.44 67,610 30,500	yield q ha ⁻¹ (Rs.) of cultivation (Rs. ha ⁻¹) (Rs. ha ⁻¹) 260.00 65,000 29,200 35,800 284.81 71,203 31,000 40,203 270.44 67,610 30,500 37,110

CONCLUSION

Results of study thus clearly indicated that various treatments significantly influenced the growth, yield, fruit quality and nutrient uptake in tomato. Application of organic and inorganic sources of nutrition together showed superiority over inorganic alone. It is found that application of 43.75 tonnes FYM and 50% RDF (T₈) gave maximum fruit yield (284.81 q ha⁻¹) and also showed superiority over other treatments for fruit quality. Application of green manure and 100% RDF (T₁₃) gave fruit yield (270.44 q ha⁻¹) which was at par with treatment T₈. Maximum net return (Rs.40203 ha⁻¹) and B: C ratio (1.29) was obtained from treatment T₈.

REFERENCES

 Singh, S.R., Prakash, S., Singh, N. and Kumar, J. Organic farming technology for sustainable vegetable production in hills. Abstract: Intn. Symp. On Sustainable Agriculture in Hill Areas HPKV, Palampur, India Oct. 29-31. pp. 107-108 (1998).

- 2. Habtegebrial, K. and Hail, M. Introduction to plant nutrition and soil fertility management. Mekele University, Tigray, Ethiopia (2009).
- Anderson, J., Blackie, M., Eilitta, M., Fernandes, E., Sanginga, N., Smaling, E. and Spencer, D. A consultative review of the Rockefeller foundation's activities to improve and sustain soil fertility in East and Southern Africa. New York (2002).
- Place, F., Christopher, B., Barrett, B., Freeman, A., Bernard, D. and Vanlauwe, D. Prospects for integrated soil fertility management using organic and inorganic inputs: Evidence from smallholder African agricultural systems. *Food Policy* 8: 365-378 (2003).

- Renuka, B. and Ravisankar, C. Effect of organic manures on growth and yield of tomato. *South Indian Hort.*, 49(Special):216-217 (2001).
- 6. Bagale, M.M., Kale, V.S., Kharde R.P., and Alekar .A.N., integrated nutrient management studies in tomato. *Bioinfolet* **11** (4 A): 1054- 1057 (2014).
- 7. Nanthakumar, S. and Veeraragavetathem, D. Effect of integrated nutrient management on yield and yield attributes of brinjal (*Solanum melongena*) cv. PLR1. *South Indian Hort.* **47(1-6):** 42-48 (1999).
- 8. Avhad, A.B., shirsagar, D.B., Shinde, S.R. and Bhalekar, M.N. Effect of integrated nutrient management on growth, yield, quality and nutrient uptake in tomato.

- Asian J. Sci. Tech. **07(4)**: 2731-2733 (2016).
- 9. Nair, G.U. and Peter, K.V. Organic, inorganic fertilizers and their combination on yield and storage of hot chillies. *Veg. Sci.* **17(1)**: 710 (1990).
- 10. Sen, H., Das, P.K. and Mukhopadhay, S.K. Response of elephant foot yam to varying levels of FYM and NPK fertilization. *Haryana J. Hort. Sci.* **25(2)**: 53-54 (1996).
- Singh, D.V., Mukhi S.K. and Mishra S.N. Impact of integrated nutrient management on tomato yield under farmers field conditions. *International J. Agric. Environ. Biotechnol.* 9(4): 567-572 (2016).